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the possible insufficiency of  model  approximat ions .  
In this respect, too, the results obtained seem to be 
encouraging;  much  work is needed to improve the 
potentials,  i f  very accurate computat ions  of  elastic 
constants are wanted. 
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Abstract  

The least-squares ref inement of  non-centrosymmetr ic  
crystal structures as inversion twins is presented.  It 
is shown that  the absolute-structure (twin) parameter  
x may be used to define the chirality or polari ty of 
un twinned  crystals. The method has been appl ied  to 
20 compounds .  The least-squares ref inement of  the 
absolute-structure parameter  is rapid and stable. The 
value of x general ly falls within three e.s.d.'s of  the 
physical ly meaningfu l  range 0-< x - 1 and the e.s.d.'s 
increase as f '  becomes smaller. New residual  and 
goodness-of-fit  values are defined to judge  the 
efficiency of  the method.  The est imated s tandard devi- 
ation of  x, taken with a pseudo Durb in -Wat son  d 
statistic, provides an excellent criterion for the relia- 
bility of  the absolute-structure determinat ion.  Refine- 
ments on data  sets including very accurately measured  
Friedel pairs of  reflections have also been tested. The 

determinat ion of  the free direction(s) of  origin-free 
space groups and an efficient algori thm for the inver- 
sion of  a crystal structure that refines to x-~ 1 are 
given in detail.  The data  and procedural  structures 
necessary for an efficient computer  implementa t ion  
of absolute-structure ref inement  are also considered. 
The formulae  giving the correction for the effects of  
anomalous  dispersion on IFobsI from an inversion- 
twinned crystal are given. These corrected Fobs are 
the ones to be used in an electron-density calculation. 
The correlation of residuals following least-squares 
refinement is quantif ied by using a pseudo Durb in -  
Watson d statistic. The causes of the correlation, its 
effect on the value of  x and its e.s.d., and ways of  
avoiding the correlation are considered. It is shown 
that in using x it is more suitable to refine on IFI 2 
than IF[. A weighting scheme is presented and  tested 
that increases the sensitivity of  a ref inement to 
absolute structure. 

0108-7673/85/050500-12501.50 © 1985 International Union of Crystallography 
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Introduction 

The technique of determining chirality or polarity of 
non-centrosymmetric crystal structures during least- 
squares refinement was suggested by Rogers (1981) 
as an alternative to practical and theoretical difficul- 
ties arising in the use of Hamilton's R-factor ratio 
test (Hamilton, 1965). In the Rogers technique a 
parameter r/ is defined that multiplies all of the 
imaginary anomalous dispersion factors f" to give 
~1/". r / is  refined in the normal way by least squares. 
Jones (1984a) has presented some results of the prac- 
tical application of the Rogers r/refinement on real 
crystals. For a wide range of medium-to-strong 
anomalous scatterers, Jones shows that r/refinement 
is an effective and robust method. However, his results 
are mostly limited to 'complete' data sets where all 
reflections and their antireflections have been 
measured, and to medium-to-strong anomalous scat- 
tering effects. Jones did not attempt the application 
to a limited set of very-high-accuracy intensity data 
of selected Friedel pairs, especially where the 
anomalous scattering is weak (Rabinovich & Hope, 
1980). 

From theoretical considerations and computer 
simulations, Flack (1983b) has shown some short- 
comings in the Rogers r/parameter, which might lead 
to a false least-squares minimum and unreliable esti- 
mated standard deviations. It is possible to overcome 
these deficiencies by refining an alternative parameter 
x, which describes the crystal as an inversion twin. 
1 - x  and x are then respectively the fractions of the 
structure and its inverse in the macroscopic sample. 
The necessary structure-factor equation is given by 

F(h,k,l ,x)  2 

=(1-x)[F(h,k,  l)]2+x[F(-h,-k,- l)  2. (1) 

The computer simulations showed that x both con- 
verges more rapidly than r/ and does not fall into 
false minima. Further, x, unlike r/, is defined in terms 
of a physically realizable state of a macroscopic 
sample (i.e. an inversion twin) and any value 0 - x - 1 
has a ready interpretation. 

The current work is arranged in the following way. 
Firstly, the practical application of the refinement of 
x to real-crystal data is presented. The first section 
uses routine data measurements, in most of which all 
Friedel pairs have been measured. Following this 
comes refinements using a routine data set coupled 
with high-accuracy measurements on selected 
Friedel-pair measurements taken from the literature. 
Afterwards, the algorithms of some ancillary calcula- 
tions necessary when treating non-centrosymmetric 
crystal structures by means of the refinement of x are 
presented. These algorithms concern the generation 
of constraints in origin-free space groups, the inver- 
sion of a structure solution to make the chirality or 
polarity of the structure model correspond to that of 

the crystal, the data structures and calculation tech- 
niques useful for an efficient implementation of 
absolute-structure refinement and the necessary cor- 
rection to apply to ]Fobs from an inversion-twinned 
crystal for the purposes of calculating electron density 
values. With these algorithms incorporated into a 
program system, the possibility of user error or over- 
sight can be greatly reduced. The paper concludes 
with three sections concerning the incidence of corre- 
lated residuals, the choice of whether to refine on F 
or IF 2, and the derivation and testing of a weighting 
scheme to make refinement more sensitive to the 
absolute structure of a crystal. These three sections 
have consciously been grouped together as our cur- 
rent understanding of these problems is less well 
advanced than for the preceeding sections. However, 
it is considered vital to draw attention to these issues 
so that further experimentation may take place. 

It cannot be overemphasized at this point that the 
determination of absolute structure must be an 
integral part of the determination of any non- 
centrosymmetric crystal structure if one is to avoid 
biased atomic parameters (Cruickshank & 
McDonald, 1967). Some of the fundamental problems 
involved in dealing with physical properties and the 
chirality and polarity of crystals, such as the choice 
and sense of axes, have been very clearly exposed by 
Rogers (1975). 

Jones (1984a) has suggested the use of the term 
'absolute structure' to distinguish between the correct 
structure and its inverse. This term, which will be 
widely used in this paper, encompasses both chirality 
and polarity, x of (1) will be called the absolute- 
structure parameter. A further difficulty in ter- 
minology arises in the use of the words polar and 
polarity as applied to crystal structures. In this work, 
the definitions of polar direction, polar axes and polar 
point group are those given in International Tables 
for Crystallography (1983). The polarity of a crystal 
is determined by finding the sense of the polar direc- 
tions by some means. There is  a subset of polar 
p0int/zpaee groups Where the position of the origin 
may be freely chosen in at least one direction. These 
will be referred to as origin-free point/space groups. 
Note especially that this use is contrary to that of 
Waser (1974), Cruickshank & McDonald (1967) and 
Templeton (1982). 

Refinements with routine data sets 

In Tables 1 and 2 are presented the results of least- 
squares refinements using the parameter x for the 
non-centrosymmetric crystal structures measured in 
this laboratory over a period of approximately 18 
months. The intensity measurements are from routine 
data collections made with Mo Ka radiation at room 
temperature on a Philips PWll00 four-circle diffrac- 
tometer. Parameters refined were the scale factor, 
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Table 1. Least-squares absolute-structure refinement on some compounds 

Compounds are arranged in descending order of the largest f". Intensity measurements were performed with M o Ka at room temperature. 
If no restriction is indicated on an index for the hkl range it means that the index varied over the whole range of positive and negative 
values as limited by sin (O)/A. * means that antireflections were measured. NXo is calculated for Friedel pairs having Xo > 2.0 or when 
marked with ** for Xo > 4.0. The definition of the parameters is given in the text. The e.s.d, of x is given in parentheses. 
References: CENZ, Cenzual & Parth6 (1985); DEPM, Depmeier (1985); BEDU, Bernardinelli, Dunand, Flack, Yvon, Giersch & Ohloff 
(1984); BEWG, Bernardinelli & Giersch (1985); H IJE and H IBO, Jefford, Bernardinelli, Boukouvalas & Higa (1985); BEDE, Berset, 
Depmeier, Boutellier & Schmid (1985); BEGE, Grrard, Lucken & Bernardinelli (1985); MEDE, Mendoza-Alvarez, Depmeier, Schmid 
& Yvon (1985b); MEAL, Mendoza-Alvarez, Depmeier, Schmid & Yvon (1985a); BEKU, Kiindig, Perret & Bernardinelli (1985); DUFL, 
Dunand & Flack (1983); BERN, Bernardinelli & Flack (1985); BECH, Oppolzer, Chapuis & Bernardinelli (1984a); BEKE, Oppolzer, 
Kelly & Bernardinelli (1984); BEOP, Oppolzer, Chapuis & Bernardinelli (1984b); BEFL, Oppolzer, Dudfield & Bernardinelli (1985); 
H O V E ,  H o v e s t r e y d t  (1984) ;  B E G I ,  Berdard ine l l i  & G i e r s c h  (1985).  

M a x .  
Chemical Space sin 0/A hkl Max 
formula group Reference A,-1 range R(% ) Nob s NXo Xc x 

Zr3Ir I42m CENZ 0.70 0 < _ k<__ h, l* 6-0 451 40 4.7 0.05 (7) 
Srs(AI12024)(WO4)2 I7~2m DEPM 0.64 h, k, l* 2.0 441 159"* 16.8 0.54 (9) 
C25HasO4Br P2t2121 BEDU 0.53 0 -  < h, k, l* 4.6 2519 321 21.6 0.012 (21) 
C25H3sOaBr P212t2 t BEWG 0.53 0-< h, k, l* 8.5 1828 137 36.4 -0 .02  (3) 
(CtsH2oO2BrCl)2 P21212 t HIJE 0"53 0_< h, k, !* 7.4 2460 239 18.7 0.06 (2) 
CtsH20OBrCI P2t HIBO 0-62 h; 0 < - / q  1" 3.8 1389 312 48.0 -0.01 (2) 
Cu3BTOt3I F7~3c BEDE 0.57 h, k; 0 -  < 1 1.4 110 16"* 9.9 -0-03 (9) 
CsH702SbC14 P21 BEGE 0.60 h; 0 -  < k, l* 5.3 1700 296 31.2 -0.01 (8) 
Zn3BTO13C1 R3c MEDE 1.08 0 _  < h, h + k ,  l 5.1 1425 17"* 13.2 0.09 (5) 
Fe3B7Ot3Cl R3c MEAL 1.08 0-< h, h + k, ! 3-8 1432 17"* 12-8 -0-01 (6) 
Ct3Hl2OaCr P2t2t21 BEKU 0.64 0 ~  h, k, l* 3.3 2002 53 0.7 0.51 (4) 
Cr3B7013C1 F7~3c DUFL 1.00 h, k, l* 4.3 828 47 5.8 -0.01 (4) 
CaHsOrK P21212 t BERN 0.70 0 _  < h, k, l* 2.2 1392 157 11.0 -0 .03 (6) 
C25H41NO4S P2t2121 BECH 0-51 0 < - h, k, l* 5.7 1732 55 4.0 0.05 (26) 
ClgH2404S P212t21 BEKE 0.55 0 < _ h, k, l* 5.5 1300 52 3.3 -0 .39 (32) 
C14H21NO3S P212t21 BEOP 0.55 0 -  < h, k, l* 4.7 1131 66 5.2 0.10 (17) 
C24H4sNOsS P2t2t2 t BEFL 0.51 0 -< h, k, l* 4.9 1957 61 1.5 0-13 (20) 
MgNH4PO4.6H20 Pmn2 t HOVE 0-64 0 -  < h, k; l* 2.9 1052 41 1"3 0"11 (17) 
C16H3oO2 P212~2 t BEGI 0"55 0 < - h, k, l* 4"2 2030 23 0"3 -0"6 (2"0) 

absolute-structure parameter x, atomic positional and 
displacement parameters, which usually were 
anisotropic for most atoms. Full-matrix least-squares 
refinement on IF[ undertaken by a local version of 
the X R A Y 7 6  system (Stewart, Machin, Dickinson, 
Ammon, Heck & Flack, 1976) was used for almost 
all of the refinements. The x parameter converges in 
two cycles with one large step followed by a small 
adjustment even when x=0 .5 .  However, when the 
anomalous dispersion contribution is very small three 
or four cycles are required. It was never necessary to 
damp the refinement of x. The conventional R factor 
on I FI is unweighted and calculated from the Nobs 
reflections. Tables 1 and 2 are arranged in descending 
order of the largest value of f"  and the quantities 
whose values are given therein are defined as follows: 

A o "-" Fobs(h, k, l)l 2 -  Fobs(-h , -k ,  - l )  2, 
Ac=IFcalc( h , k,/)12-]Fo~o(-h,-k, - l )2 ,  

xo=laoll (ao), xd =lao-Zcl/ (ao), 

= E - Zc l /E  IZol, = {E X /E X o)'/2 
So={~.X21(NXo-1)} '/2, Sa={~,X2/ (Nxo-1)}  '/2, 

d"= 2 ~ ( A o - A¢)2/E (IFobst =-  IFca~d2) 2. (2) 

NXo is the number of Friedel pairs with Xo > 2.0 (or 
4.0 when marked by **) that contribute to the sums 

used to calculate the values in Table 2. All sums are 
taken over the NXo terms apart from the denominator 
of d", which has twice this number of terms. RA and 
wRA are unweighted and weighted R factors that 
apply to differences between Friedel opposites of the 
difference between observed and calculated squared 
structure amplitudes. So and Sd are goodness-of-fit 
values that apply to differences between Friedel 
opposites as-observed and observed-minus-calcu- 
lated. RA, wRA, So, Sd and d" (discussed below), 
taken with x and its e.s.d., are intended as sounder 
indicators of the fit of the refinement compared to 
the conventional R factors of the 'correct' and 
'inverted' structures so convincingly criticized by 
Rogers (1981). As a further aid to understanding, 
histograms of Friedel-pair differences of three of the 
compounds of Tables 1 and 2 are presented in Fig. 1. 

In all cases shown in Table 1) the value of x lies 
in the physically valid region 0---x _< 1 within three 
e.s.d.'s. No constraint has been applied on x during 
the least-squares refinement. This observation con- 
firms both the excellent behaviour of x refinement 
obtained in the computer simulations (Flack, 1983b) 
and the essential correctness of the imaginary 
anomalous dispersion factors used (International 
Tables for X-ray Crystallography, 1974). Apart from 
the compounds DEPM and BEKU all values of x lie 
within two or three e.s.d.'s of 0.0 since, where 
necessary, the atomic coordinate sets have been 
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inverted to make the crystal and model polarities 
identical. Where the absolute configuration of a 
molecule is known by chemical or other means, this 
agrees in all cases with that determined by absolute- 
structure refinement (BEDU, BEWG, BERN, BECH, 
BEKE, BEOP, BEFL). No attempt has been made 
to correlate either physical, chemical or morphologi- 
cal properties of the samples used in the diffraction 
studies of the achiral (but polar) crystals (i.e. CENZ, 
DEPM, BEDE, MEDE, MEAL, DUFL, HOVE). For 
DEPM and BEKU the value of x clearly indicates 
that the samples are inversion twins with approxi- 
mately 50% of each component. The final compound 
BEGI contains only two oxygen for 16 carbon atoms. 
Measured as a routine data set with Mo Kt~ radiation 
one would hardly expect to be able to distinguish the 
absolute structure. The results of the refinement, 
which did not diverge, amply confirm this suspicion. 

As a general trend the e.s.d.'s on x increase as the 
f"'s become smaller. The Friedel-pair RA factors and 
goodness-of-fit statistics given in Table 2 also show 
that the agreement becomes less good as the values 
of f" diminish. Under these conditions one sees that 
the RA factors become large and that the reduction 
in the goodness-of-fit in going from So to Sa becomes 
smaller. Especially interesting is the case of the com- 
pounds DEPM and BEKU, which x refinement 
showed to be 50% inversion twins. The statistics 
contained in Table 2 measure differences between 
Friedel pairs and the extent to which these are taken 
into account by the structure model. Although the 
f"'s are considerable for these compounds, the twin- 
ning will remove differences between Friedel pairs. 
One hence obtains high tea factors and no difference 
between So and Sa. 

Similar conclusions can be drawn from the his- 
tograms s'Jown in Fig. 1. The absolute structure of 

6 0 0 '  

5 0 0  

-6 

'~ 400 

= 300 

.~ 200 

z 

0 
0 1 

K H C 4 H 4 O e -  B E R N  

...... ~ x = - 0 . 0 3 ( 6 )  

i 

I 

i 
i 

2 4 8 16 

"C~sH120, tCr  - B E K U  600 '  
900 . . . .  

750  x = 0 . 5 1 ( 4 )  500 

600 

45O 

300 200 
. . . .  

I 
i 

150 100 
I 
I . . . .  ! 

l . , 0 
4 8 

400 

300, 

100 

' C14H21NO3S - B E O P  

......  

I 
i x = 0 . 1 0 ( 1 7 )  

I 
f 
[ 

I 
1 
i 
i 

I 

i 
i 
i 

i 

o 1 2 4 8 

B i n a r y  c l asses  o f  v a l u e s  o f  X 

(a) (b) (c) 

Fig. 1. Histograms from three compounds of Friedel-pair differ- 
ences. Each histogram shows the number of reflections in the 
range of value of X. Continuous line, NXo ; dotted line, NXa; 
chain dotted line, overlapping lines. 

crystal BERN has clearly been determined by x 
refinement and, as expected, the histogram of the 
observed-minus-calculated Friedel differences (Xd) is 
narrower about the origin than that of the as-observed 
differences (go). For the twinned crystal BEKU the 
two histograms overlap completely whereas for 
BEOP, with x = 0.10 (17), one sees only a slight thin- 
ning of the histogram compatible with the high e.s.d. 
of x. The histogram of the as-observed differences 
(go) provides a valuable method of assessing the 
absence of a centre of symmetry in a crystal of 
unknown structure. 

Refinements with selected Friedel-pair measurements 

These refinements were carded out on the published 
data* of the compound 4,4'-dimethylchalcone 
(C17H16 O)  - hereafter DMC - whose crystal structure 
was determined by Rabinovich & Shakked (1974) and 
refined to an R value of 0.045. The molecule of DMC 
is achiral and crystallizes in the space group P212121. 
Rabinovich & Hope (1980) have determined the 

* Data generation of DMC. 
The list of structure factors (Supplementary Publication No. 

SUP 30554) of DMC produced by Rabinovich & Shakked (1974) 
was kindly provided by the Executive Secretary of the International 
Union of Crystallography. The list includes three measured reflec- 
tions (774, 775 and 776) outside the limiting Cu Ka sphere. The 
e.s.d.'s or the weights of Ifobsl are not given. E.s.d.'s were generated 
from a model consisiting of a constant background and a stability 
contribution to the variance proportional to the square of the 
intensity. With weights equal to the inverse of the variance, the 
e.s.d.'s were adjusted to give an approximately fiat distribution of 
weighted squared differences when analysed in terms of sin (0)/A 
and Ifobsl. The generated e.s.d.'s are too large as judged by a 
goodness-of-fit of approximately 0.5. 

The three sets of  very accurate selected Friedel-pair measure- 
ments marked (a), (b) and (c) were taken from Rabinovich & 
Hope (1980). As the authors report only mean intensities, Bijvoet 
ratios and their e.s.d.'s, these had to be converted back to net 
intensity measurements (and their e.s.d.'s) by assuming that the 
e.s.d, of reflection and antireflection were identical. These three 
sets, each of 14 measurements, were combined separately with the 
(P) data set to give sets (Pa), (Pb) and (Pc). The assignment of 
scale factors was carried out as follows. In all cases the (P) 
reflections were assigned to one scale factor. For (a) and (b) in 
(Pa) and (Pb) the reflections 114 and 114 were given a separate 
scale factor as were 122 and 122 whilst the remaining ten measure- 
ments were put together in a fourth scale-factor group. For (c) in 
(Pc) each Friedel pair was assigned to a separate scale factor giving 
eight scales in all. This curious assignment of scale factors is 
necessary owing to the measurement conditions used by 
Rabinovich & Hope (1980) and the detailed information available 
in their paper. One further adjustment of the intensity data was 
necessary. The chirality of the crystal used to measure (P) need 
not be the same as those of (a), (b) and (c). In a refinement on 
(Pa), (Pb) or (Pc) one absolute-structure parameter should be 
assigned to the (P) set and another to the (a), (b) or (c) set. 
However, our program only allows for the refinement of one 
absolute-structure parameter. Under these conditions we inverted 
the Friedel measurements in (b) and (c), according to the absolute 
structure determined by Rabinovich & Hope (1980), so that the 
absolute structure of the (P), (a), (b) and (c) sets are all identical. 
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Table 2. Friedel-pair agreement factors for the com- 
pounds in Table 1 

Defini t ion o f  the pa r ame te r s  is given in the text. The  calcula t ion 
o f  d" o f  equa t ion  (2) was a d d e d  into the p rog ram at a late stage 
and  the va lue  is not  avai lable  for  all compounds .  

Reference  RA(%) wR~ ( % )  So Sa d" 
CENZ 36.1 41.1 2.95 1.21 0.46 
DEPM 97"8 99"8 19.3 19.2 
BEDU 21.7 21.7 6.44 1.40 
BEWG 40.3 30" 6 4.91 1.50 1 "61 
HIJE 47-2 42.4 4.35 1.85 0-15 
HIBO 25.3 26.2 8.83 2.31 0'02 
BEDE 27.4 49.1 6.22 3"05 0.26 
BEGE 63.4 99.1 37.2 36.8 0.12 
MEDE 56.5 58.1 16.2 9.45 
MEAL 45.8 42.4 10.5 4.43 0.05 
BEKU 99.7 100 3.02 3'03 
DUFL 48.3 51.4 3.62 1.86 
BERN 35'2 42.1 3.51 1.48 
BECH 84.7 87.4 2.52 2.20 
BEKE 90.8 93.4 2.42 2.26 
BEOP 73.4 72.3 2.92 2-12 0.01 
BEFL 93.0 93.0 2.60 2.42 0.12 
HOVE 91.3 93.1 2.56 2.38 
BEGI 100 100 2-36 2.36 

Table 3. Results of refinements on DMC 

tp is a p a r a m e t e r  o f  the weight ing scheme and  x is the value of  
the absolu te-s t ruc ture  paramete r .  E.s.d. o f  x is given in parentheses .  

Datase t  ¢ x 

(P) 0 -0.96 (82) 

(Pa) 0 -0.133 (20) 
(Pa) 100 -0.124 (15) 
(Pa) 1000 -0.120 (11) 

(Pb) 0 -0.102 (15) 
(Pb) 10 -0.100 (14) 
(Pb) 10000 -0.109 (8) 

(Pc) 0 0.052 (20) 
(Pc) 10 0-056 (18) 
(Pc) 100000 0.054 (8) 

Rabinovich & Hope (1980) are confirmed by x refine- 
ment although the values of x are sometimes more 
than three e.s.d.'s away from the ideal value of 0.0. 
Without further data it is not possible to identify the 
cause of this discrepancy. 

absolute conformation of two samples of DMC from 
very careful intensity measurements of seven selected 
Friedel pairs on each by comparing observed and 
calculated Bijvoet ratios. Even using Cu Ka radiation 
the imaginary anomalous dispersion contribution is 
tiny. Rabinovich & Hope (1980) have undertaken a 
careful statistical analysis of their data in order to 
show that their measured Friedel-pair differences are 
significant and that these correspond significantly to 
those calculated from the structure solution of 
Rabinovich & Shakked (1974). 

Least-squares refinements on ]FI were carded out 
separately on the data sets (P) (that used in the 
structure determination of DMC by Rabinovich & 
Shakked, 1974) and (Pa), (Pb) and (Pc) obtained by 
combining (P) with the three sets of accurate 
measurements (a), (b) and (c) of Rabinovich & 
Hope (1980). Atomic parameters were taken from 
Rabinovich & Shakked (1974) corrected for typo- 
graphic errors as indicated in the Cambridge 
Structural Database. Scale factors, absolute-structure 
parameter, atomic positional and anisotropic dis- 
placement parameters for the O and C atoms were 
refined. Hydrogen atoms were included but not 
refined. An isotropic secondary extinction correction 
(Becker & Coppens, 1974) was refined with set (P) 
and subsequently applied but not refined with sets 
(Pa), (Pb).and (Pc). Weights were equal to the inverse 
of the variance of an observation. The atomic param- 
eters and residuals obtained from refinement of (P) 
gave essentially the same values as those obtained by 
Rabinovich & Shakked (1974). In Table 3, reading 
only those entries with ~ = 0, one finds the results of 
the refinements. These were stable and converged in 
three or four cycles. All R factors are in the range 
4.7 to 5.7%. One can see that the results of 

Constraints for origin-free space groups 

In an origin-free space group the origin may be freely 
placed in at least one direction. If suitable action is 
not taken the presence of the floating origin leads to 
the least-squares normal-equations matrix becoming 
singular. The most common approach to this problem 
is to constrain the atomic coordinates along the 
origin-free direction(s) by fixing the value of one atom 
or linear combination of atoms either by reduction 
of variables or Lagrangian multipliers. Other so- 
lutions are to use a block-diagonal refinement, to 
analyse the eigenvalues and eigenvectors of the nor- 
mal-equations matrix or to use a generalized inverse. 

For the constraining of atomic coordinates, it is 
first necessary to identify the origin-free direction(s) 
from the symmetry operations of the space group. 
The details of this calculation are given in Appendix 
A. As yet it has not been possible to select an 
unequivocal criterion leading to a unique constraint 
(Templeton, 1960; Waser, 1974; Flack, 1983a). 

Inverting a structure 

Refinement of x may lead to a value of x-~ 1.0 for 
an untwinned sample. The absolute structure of the 
crystal is thus inverted with respect to the structure 
model. In many cases one will wish to invert the 
atomic coordinate set so that the absolute structures 
correspond. The calculation of this inversion is not 
without its pitfalls. Depending on the space group 
and its description, the point of inversion may not 
be at the origin and, in the case of the 11 enantiomor- 
phic pairs of space groups, inversion implies a change 
of space group. The details of an efficient algorithm 
for dealing with these problems are given in Appendix 
A. 
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Computer implementation 

At first sight it might appear that the evaluation of 
the inversion-twinned structure factor and its deriva- 
tives as defined by (1) would lead to a doubling of 
calculation time since one has to evaluate two un- 
twinned structure factors to obtain one twinned one. 
However, by a suitable structuring of both the 
intensity data and the structure-factor calculation 
algorithm it is possible to accomplish the refinement 
of x with very little overhead. 

Firstly it is very efficient to arrange the intensity 
data so that information on the reflection and anti- 
reflection either form part of the same logical record 
or one follows the other in sequence. Now as both 
IF(h, k, I, x)[ 2 and [F(-h,-k,  -l, x)[ 2 depend on 
IF(h, k, 012 and IF(-h,-k ,  -012, the latter two quan- 
tities need only be calculated once and saved 
temporarily for the evaluation of the two inversion- 
twinned structure factors. The same arguments apply 
for the calculation of the derivatives. In this way the 
ratio of the number of twinned-to-untwinned struc- 
ture factors is one for complete data sets including 
both reflections and antireflections. 

Secondly, in the evaluation of IF(h, k,/)[ one forms 
algebraic sums of terms that are the products of sine 
or cosines with atomic-scattering-factor values. 
Exactly the same terms occur in the calculation of 
[F(-h,-k,  -1)[ but with some of the signs reversed. 
Hence by simultaneously calculating IF(h, k,/)1 and 
[F(-h,-k,-/)1,  and their derivatives, or by saving 
some intermediate results, a considerable economy 
of calculation may be achieved. This economy would 
offset the extra calculation time brought about by the 
use of the absolute-structure parameter. 

Electron density calculation 

For the calculation of electron density values, an 
estimate of the anomalous dispersion contribution 
needs to be subtracted from each of the [Fobs[ before 
performing the Fourier inversion. In the method due 
to Larson (1976), it is assumed that the observed 
structure amplitude is a good measure of the calcu- 
lated structure amplitude with dispersion and that 
the corrected observed structure amplitude is a good 
measure of the dispersion-free calculated structure 
amplitude. In essence this method allows the 
anomalous dispersion contribution to each structure 
factor to be scaled giving a different contribution to 
the observed and calculated structure factors. On the 
other hand Schwarzenbach & Flack (undated) have 
preferred to assume that the dispersion contributions 
to the observed and calculated structure factors are 
identical. Either calculation supposes the sample not 
to be inversion-twinned. In Appendix C the gen- 
eralization of the Schwarzenbach & Flack (undated) 
analysis to inversion-twinned crystals is presented. 

We have extensively tested the use of the formulae 
of Appendix C on the data from compound BERN 
(Bernardinelli & Flack, 1985) of Tables 1 and 2. For 
example, difference electron density maps calculated 
after refinements from both the correct and inverted 
coordinate sets produce identical results. 

Correlated residuals 

Of the utmost importance in absolute-structure deter- 
mination through refinement of the parameter x is 
the reliability that one can place on its estimated 
standard deviation. In this respect the problems that 
have been encountered in the evaluation of the e.s.d.'s 
obtained from the Rietveld profile refinement of pow- 
der diffraction data (e.g. Shirley, 1984; Sparks, 1985; 
Rollett, 1984; Prince, 1984) are very instructive. Claim 
and counter-claim have succeeded one another as to 
whether the e.s.d.'s are 'correct'. One of us (Flack, 
1984, 1985) has suggested that the value of the Dur- 
bin-Watson d statistic (Durbin & Watson, 1950,1951, 
1971) is of the greatest help in evaluating these con- 
tested e.s.d.'s. Recall that for uncorrelated residuals 
one expects a value of d of 2.0, while for positive or 
negative correlation, where adjacent residuals tend 
to have the same or opposite sign, d becomes less or 
greater than 2.0 respectively, the limiting values being 
0.0 and 4.0. For time series measurements with 
autocorrelated errors (see Flack, Vincent & Vincent, 
1980) it is known that values of d away from 2.0 
indicate unbiased parameter estimates but e.s.d.'s that 
may be wildly in error. In the realm of diffraction 
physics this situation has long been known to exist 
for gas electron diffraction measurements (Morino, 
Kuchitsu & Murata, 1965; Murata & Morino, 1966). 
However, it will be supposed here that the major 
perturbations for crystal diffraction measurements are 
due to the so-called systematic errors such as absorp- 
tion, extinction, thermal diffuse scattering, multiple 
scattering and shape of profile function. Clearly these 
can lead to biased parameter estimates. They may 
also produce incorrect e.s.d.'s. 

d", defined in (2), is a pseudo Durbin-Wats~n d 
statistic, which considers only the correlation between 
the members of Friedel pairs. As such it is intended 
as a pointer to the effect of systematic errors in pro- 
ducing correlated residuals in a least-squares refine- 
ment and perturbing the estimate of x and its e.s.d. 

When the model used in a least-squares refinement 
parameterizes completely the non-random variations 
of the observed data, unbiased estimates of both 
parameters and their e.s.d.'s are obtained (Prince, 
1984). We have confirmed this theoretical result by 
refinements on 100 simulated data sets of KH tartrate 
where each reflection was given an independent 
Gaussian error. Normal probability plots for scale, 
atomic positional and displacement parameters, and 
absolute-structure parameter were produced. No sub- 
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stantial deviations from the ideal plot of unit slope 
and zero intercept were found. These refinements 
produced values of d" of approximately 2.25. Further 
experiments were performed in which the variance- 
covariance matrix of the observations became block 
diagonal rather than diagonal. The 2 × 2 blocks were 
for Friedel-pair measurements, the off-diagonal terms 
of which were given the value po-2, where o -2 is the 
observed variance of both reflection and anti-reflec- 
tion and p is a correlation coefficient assumed to be 
constant over the whole data set. Performing refine- 
ments with different values of p, it was found that 
the parameter estimates and d" were independent of 
p whilst the e.s.d, of x depended strongly on the 
value of p. The only source of systematic error in 
these refinements on IFI was the setting to zero of 
reflections whose calculated or observed IFI 2 was 
negative. 

On studying Table 2, one sees that all of the data 
sets for which d" is available suffer from positive 
correlated residuals. Recall that all these data sets 
were measured on a routine basis with the primary 
objective of determining atomic positions. Absorp- 
tion and extinction corrections were either not carded 
out or carded out to a low degree of accuracy. Effects 
such as thermal diffuse scattering and multiple scat- 
tering were never treated. Such systematic effects are 
certainly the cause of the correlated residuals. 
Nevertheless it is clear from Table 1 that there is little 
or no bias in the value of x arising even with correlated 
residuals. Owing to the limited data available to us, 
it is not possible at present to state to what extent the 
e.s.d.'s of x are affected by the correlation of the 
residuals. However, the closer d" approaches 2.0 the 
smaller becomes the bias in the e.s.d.'s of x. We 
interpret the simulations described above as indicat- 
ing that it is the analysis and correction of the system- 
atic errors rather than the use of off-diagonal weight- 
ing schemes that will produce reliable parameter 
values and e.s.d.'s. 

Refinement on IFI or IFI2? 

The form of IF(h, k, l, x)l 2 given in (1) for the 
inversion-twinned crystal is such that I FI = will be 
non-negative for 0 -  x -< 1 but it may become negative 
outside this range. For untwinned crystals the 
theoretical value of x is either 0 or 1 whereas the 
least-squares estimator of x will take values in the 
neighbourhood of 0 or 1. As can be seen in Table 1 
the estimator of x can thus frequently take values of 
x < 0 (or x > 1) and these can produce some negative 
values of the calculated value of lFlL The correspond- 
ing problem of negative values for the observed [El 2 
is well known (see for example French & Wilson, 
1978) and it is interesting to see which of the proposed 
solutions for observed IFI = might be applied to calcu- 
lated values. 

A most commonly applied approach when carrying 
out refinement on IFI is to set negative IFI 2 values to 
zero. This is the one currently used in our program 
system (Stewart et al., 1976). It seems to have little 
or no justification (Hirshfeld & Rabinovich, 1973). 
French & Wilson (1978) use Bayesian statistics to 
generate a non-negative from a negative I FIL The 
basis for such a technique as applied to negative 
calculated values seems dubious. One might argue in 
favour of including in the least squares penalty func- 
tions designed to keep x in the range 0-< x - 1 so that 
negative calculated [FI 2 do not occur. We are con- 
vinced that this method would be disastrous. The ex- 
pected values of x (0 and 1) for untwinned crystals 
occur at the boundaries of the physically acceptable 
region. The penalty functions would necessarily have 
large derivatives in the neighbourhood of 0 and 1 
leading to unstable refinements and worthless e.s.d.'s 
on x. The only method that seems to circumvent 
naturally and efficiently the problem is to carry out 
the least-squares refinement on  IFI 2 and to include 
as such both the negative values of the observed and 
c a l c u l a t e d  I FI 2. To our great regret we have not taken 
sufficiently seriously the conclusions of Hirshfeld & 
Rabinovich (1973) as most refinements described in 
this paper are based on IF I. 

Weighting scheme 

Parsifal's theorem shows that minimization of 

Q=~ w(h)[Fo(h)- Fc(h)] 2 

with reciprocal-space unit weights [ w ( h ) = l ) ]  is 
equivalent to minimizing 

U=S W(x)[po(x)-pc(x)] 2 dx, 

the integral of the difference density squared over the 
unit-cell volume, with direct-space unit weights 
[ W(x)--1].  For any direct-space weighting scheme 
W(x) there exists in principle the corresponding 
reciprocal-space one w(h). Dunitz & Seiler (1973) 
have been able to produce the reciprocal-space 
weighting scheme corresponding to increasing the 
direct-space weight of the atomic centres and decreas- 
ing the weight of the interatomic regions. This scheme 
attempts to fit more accurately the electron density 
of the atomic sites. 

Appendix B gives the derivation, based on the 
above approach, of a reciprocal-space weighting fac- 
tor capable of adjusting the sensitivity of a refinement 
to the centrosymmetric or the antisymmetric part of 
the electron density and also to the absolute structure. 
In the derivation the electron density is first decom- 
posed into a centrosymmetric and an antisymmetric 
contribution. These contributions can then be given 
different weights in the minimization of U. In order 
to allow for the absolute structure it is the complex 
effective electron scattering density that has to be 
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decomposed into centro- and antisymmetric contribu- 
tions of both the real and imaginary parts. The weight- 
ing factor for refinement on Fi is given by 

w(h) -- [(1 - / z ) A  z + (1 + / z ) B  2 + ~Pl IF(+h)l  = 

-IF(-h)I=I]/(I+u?)(A=+B=). (3) 

Any system of weights to for refinement on F may be 
transformed into a system u for refinement on F[ = by 

u(h)  = to (h ) /  (E l f l  + to-,z=)=. 

/z may take any value between -1  and +1. With/z = 0, 
the centrosymmetric and the antisymmetric parts of 
the electron density contribute equally. When /z is 
given a positive value, it will progressively make the 
fitting of the non-centrosymmetric part of the model 
more important than the centrosymmetric part. ~o may 
take any positive value. Its effect is to increase the 
weight of those reflections that show the largest differ- 
ences between the calculated structure factors for the 
reflection and anti-reflection. In passing it should be 
pointed out that the form of this weighting factor 
corresponds exactly to the conclusions of Dunitz & 
Shearer (1960) and Marsh (1981) concerning the 
capital importance of weak reflections in resolving 
ambiguities between centro- and non-centrosym- 
metric structures. 

The weighting factor has been tested by refinements 
on DMC and the results are presented in Table 3. 
The value of/z was fixed at 0.0. Weights were equal 
to the product of the inverse of the variance of an 
observation and w(h), given in (3). Increasing the 
value of the parameter ~0 in the weighting factor does 
not alter significantly the value of x but does reduce, 
as expected, its e.s.d. 

Concluding remarks 

The use of the x parameter in the least-squares refine- 
ment of non-centrosymmetric crystal structures has 
been shown to be of very general application, of rapid 
convergence and to provide parameter values with 
estimated standard deviations that are quantitatively 
justifiable. In particular it should be clear that with 
x refinement and the ancillary calculations detailed 
in this paper incorporated into a program system one 
has a simple and fairly foolproof method of dealing 
in a perfectly general way with non-centrosymmetric 
crystal structures. The user is hence relieved of some 
of the technical difficulties associated with the space- 
group symmetry of the crystal. Moreover, the form 
of the results of the absolute-structure determination 
as a value with an estimated standard deviation seems 
more readily comprehended by many of those using 
crystal-structure determination over the alternative 
significance points associated with Hamilton's R- 
factor ratio test. Of the different statistical descriptors 
that have been used to assess the reliability of 

absolute-structure determination, we have found the 
value of x, its estimated standard deviation and the 
pseudo Durbin-Watson statistic d" to be particularly 
useful. 

Jones (1984b), in his analysis of structures recorded 
in the Cambridge Structural Database for 1982, poses 
several questions arising from absolute-configuration 
determinations. Is an R value of 0.113 adequate? Do 
four reflections constitute a large enough set of 
Friedel-pair measurements? Is it acceptable to use 
Friedel pairs from only the hkO reflections? We are 
also concerned that in very many cases, where calcu- 
lated and observed Bijvoet ratios have been compared 
in order to determine absolute structure, no error 
estimates, either variances or covariances, are repor- 
ted for the calculated Bijvoet ratios. In such cases, 
no allowance is made for the possible variation of 
these calculated ratios owing to errors in the estimated 
parameters of the structure solution. It should, 
however, be clear that by using the absolute-structure 
parameter x and simultaneously refining on both the 
'complete' data set and the selected Friedel-pair 
intensity measurements a quantitative answer to this 
type of question can be obtained through the e.s.d. 
of x as we have shown for the case of DMC. Clearly, 
as the atomic structural parameters (both positional 
and displacement) are varied with the absolute-struc- 
ture parameter x the difficulties in using error-ignored 
calculated Bijvoet ratios can be completely avoided. 

It is our firm opinion that all structure refinements 
of non-centrosymmetric crystals should include the 
absolute-structure parameter. It is clear that those 
wishing to determine absolute configuration will be 
drawn to this technique but we wish once again to 
emphasize that in non-centrosymmetric space groups 
biased atomic parameters, both positional and dis- 
placement, can result from incorrectly allowing for 
the effects of absolute structure. If a value of the 
absolute-structure parameter and its e.s.d, are quoted 
as part of structure determination on a non- 
centrosymmetric crystal, one can be confident that 
the necessary precautions to avoid bias have been 
taken. Hence, the publication of absolute-structure 
parameters for all non-centrosymmetric crystal-struc- 
ture determinations whether the constituent entities 
are chiral or not is always justified. 

Certain points need further study and more experi- 
mental data. Firstly, we have been able to demonstrate 
that the weighting scheme to render a refinement more 
sensitive to absolute structure does produce a 
decrease in the e.s.d, of x. However, this scheme 
includes contributions from the calculated structure 
factors and some bias may be introduced in this way. 
It would be useful also to see the influence on the 
other parameters of using this weighting scheme and 
its sensitivity to the theshold value frequently used 
to exclude weak reflections. Secondly, none of our 
data has been corrected for absorption. Nevertheless, 
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the values of x seem to be entirely reasonable. The 
bias in the value of x brought about by the neglect 
of absorption would thus seem to be very small for 
these data sets. We are actively considering this matter 
at present. Thirdly, we have also been able to show 
the presence of correlated residuals in many of our 
refinements through the use of the pseudo Durbin- 
Watson parameter d". What the precise effect of this 
correlation is on the e.s.d, of x in any particular case 
is an open question. 

The stable nature of x refinement has led us to 
revise our previous opinion (Flack, 1983b) on the 
moment at which this parameter should be introduced 
in the least squares. In our program system (Stewart 
eta/., 1976) we now automatically start the refinement 
of x at the outset and no longer wait for the stage of 
refining anisotropic atomic displacement parameters. 

It is intended to extend the ideas presented in this 
paper to the more general problems of pseudo- 
merohedral twinning and to the testing of the space- 
group symmetry of crystal structures. 
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APPENDIX A 

Two related derivations are given in this Appendix. 
The first shows the equations necessary for finding 
the origin-free direction(s) in a given space group. 
The second shows how the coordinates of a structure 
may be changed in order to switch from one chirality 
or polarity to another. 

Let the symmetry operations of the space group be 
represented by matrices Sin, tin, bn and Lj for m = 
1,2, . . . ,  M, n = 1, 2 , . . . ,  N,j= 1, 2 , . . . ,  co, where Sm 
is a 3 × 3 rotation matrix being a representation of 
one of the symmetry operations of the crystal point 
g r o u p ,  tm a 3 × 1 translation vector associated with 
Sin, b, a 3 × 1 Bravais-lattice centring translation vec- 
tor and Lj one of the set of primitive lattice translation 
vectors. M and N are the number of symmetry 
operations and centring translations respectively. 
From one arbitrary point x, the infinite set {x} of 
symmetry-related points is composed of 

Xmnj=SmxWtm q-bn q-Lj. (A1) 

Free choice of origin. We seek those cases where an 
arbitrary displacement Of x by an amount 8 produces 
the same arbitrary shift in all the elements of {x}. 
From (A1), on displacement by 8, a set of points {x'} 
composed of 

x 'nj  = Sin(x+ 8) +tin + bn + Lj (A2) 

is obtained a n d  each individual point will be dis- 
placed by 

m ! A m  ~- Amnj  -- Xmnj --Xmnj -" Sm~. (A3) 

For the set of points to be displaced without deforma- 
tion, i.e. that 8 corresponds to an isometry, all the A 
must be equal to 8 since one of the Sm is 1. Thus, 

8 =A, ,  = Sin8 for m = 1 , 2 , . . . ,  M. (A4) 

It may be shown that the M equations in (A4) are 
solved by the single equation 

1~8=8 (a5) 

making use of the idempotent projector 

II= I/M~.Sm. (A6) 

Clearly, in the general case, (A5) may be solved by 
finding the eigenvectors of 11 associated with an 
eigenvalue of + 1. If II  has no eigenvalue of + 1, only 
the trivial solution, 8 = 0 ,  is possible. As the only 
possible eigenvalues of II  are 0 or +1, trace (fl)  will 
give the number of eigenvalues of value +1 and this 
is the number of free dimensions in the choice of 
origin of the space group. 

With the space group described in an axial system 
defined by its principal symmetry elements, as is done 
in International Tables for Crystallography (1983), the 
matrix 11 is diagonal in all cases except point groups 
3 and 3 m referred to rhombohedral axes. (In the latter 
cases II  has elements of ~ everywhere, giving one 
eigenvalue of + 1 with eigenvector parallel to [ 1, 1, 1 ].) 
In practice then it is unnecessary to analyse II  with 
an eigenvalue/eigenvector routine as the origin-free 
directions may be found by inspection of the diagonal 
elements of II. 

Inverting the structure. We seek those cases where 
the inversion of x in some point produces the com- 
plete inverted structure represented by the set {x}, 
(A1), inverted in some point. Let us invert the set of 
points {x}, (A1), through a point at e to obtain the 
set {x'} of the inverted structure, of which the elements 
are given by 

x ' , j  = 2c - Xm,j (A7) 

and which on substituting (A1) leads to 

x', , j=Sm(-X)-tm+b,+Lj+2c. (A8) 

Let the original point x be inverted through a point 
at k whilst remaining in the original space group and 
setting. The new point x" generated from x is given by 

x" = 2k - x (A9) 
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and leads to a set of points {x"} with components 

Xm,n,j __-Sm,(-x)+tm,+bn,+Lj,+2Sm,k, (A10) 

which should be compared to the components of the 
correct set of points for the inverted structure given 
in (A8). The objective is to produce the set {x'} in 
(A8) from {x"} in (A10) by a suitable choice of k and 
c. These sets can be made identical only when m = m' 
since x takes arbitrary values and equating (A8) and 
(A10) under these conditions leads to 

(tin +bn,+2Smk) rood 1 = ( - tm+hn+2c)  rood 1 
(Al l )  

since (Lj-Ls,  ) mod 1 =0.  Further, as (bn,-  b,) mod 1 
= b~ one finds 

(2tin + b, + 2Smk-  2c) mod 1 = 0. (A12) 

The existence of an identity operator (1, 0) amongst 
the {S, t} and a Bravais-lattice translation of 0 
amongst the bn leads to 2 ( k - c )  mod 1 = 0, which on 
substitution in (A12) gives 

(2tm+b,+2SmC-2C) mod 1=0.  (A13) 

Thus, for some c to be a valid inversion point to 
change from one polarity to another by substituting 
2 c -  x for x for all atoms in the asymmetric unit whilst 
remaining in the space group and description, (A13) 
has to be obeyed by all symmetry operators (Sin, tin) 
for at least one of the Bravais-lattice translations b,. 
For the 22 space groups forming the 11 emantiomor- 
phic pairs, there will be no solution of (A13) and the 
structure can be inverted by changing all x into - x  
and (Sin, tin) into (Sin,-tin). 

A concise numerical solution of (A13) is achieved 
by trial and error. As many cases have a solution of 
c = 0, one may vary each component of 2c in steps of 
±12 starting from 0 and going to a maximum value of 
½. The value of c is not unique. There are seven cases 
where for the standard setting of the space group as 
given in International Tables for Crystallography 
(1983) c ~ 0 .  These are: Fdd2 11 g g 0; 141 0 ~ 0; 14122 
011; I41md 0¼0; I41cd 0¼0; I3,2d 0¼-~; F4132 111 ggg 
(see also Parth6 & Gelato, 1984). 

A p ° ( x ) = ½ [ A p ° ( x ) - A p ° ( - x ) ]  (B4) 

,~p~(x) =½[ap"(x) + Ap"(-x)] (nS) 

Ap~(x)=½EAp"(x) -Ap"( -x)] .  (B6) 

Write T -1 for the inverse Fourier transform and 
thus 

T-lEAp(x)] = AF(h). (B7) 

Now define 

A e ( x ) = a l  Ap°+a2AP°a+ia3z~p~+ia4Ap~. (B8) 

Notice that different weights have been given to the 
centro- and antisymmetric components of the real 
and imaginary parts of Ap(x) as represented by the 
coefficients al, a2, a3 and a4. 

T- l[Ae(x)]  = AE(h), (B9) 

AE(h) = T-l[zle(x)] 

= al AA°+ ia2 AB°+ ia3 A B " -  a4 AA", (B10) 

and the minimization of ~ IA E (h)12, which minimizes 
Ae(x) 2 dx, may be written in terms of the desired 

weighting scheme w(h) through 

IAE(h) 2= w(h)lAf(h)12. ( n l l )  

One thus has 

IAE (h)l  = = ( a  1 AA ° -  a4 AA') 2 

+ (a2 AB°+ a3 AB") 2 (B12) 

IAF(h)I2=(AA°-AA")2+(AB°+ AB") 2, (B13) 

w(h) = [ (a ,  A A ° - a 4 A A " ) 2 + ( a 2  AB°+ a3 AB") 2] 

x [ (AA ° -  AA") 2 + (AB ° + A n")2] -1. 
(B14) 

Assuming that AA °= sA °, AB °= sB °, AA" = sA" and 
AB" = sB", and writing a 2 = (1 - / z ) / (1  +/z2), a 2 = 
(1 +/z)/(1 +/z2), a2 = 4~p2/[(1 +/z)(1 +/z2)] and a 2= 
4~p2/[(1-/x)(1+/z2)], one obtains the weighting 
scheme given in the main text. 

APPENDIX B 

Derivation of weighting scheme 

Let the complex difference effective electron scatter- 
ing density be denoted by Ap(x) so that 

Ap(x) = Ap °(x) + i Ap"(x). (B1) 

Decomposing the components of Ap(x) into centro- 
and antisymmetric contributions one obtains 

Ap(x) = Ap°(x)+ Ap°(x)+ i[Ap~(x)+Ap~(x)],  (B2) 

where 
Ap°(x)=½[Ap°(x)+Ap°( -x)]  (B3) 

APPENDIX C 

Correction of ]Fob~] for anomalous dispersion 

Calculated structure factors without anomalous dis- 
persion for reflection and antireflection are given by 

F+= A°+ in°--lFlcos ~o+ ilFlsin ao (C1) 

F_ = a ° -  in °= I F l c o s  ,~o- ilFlsin ao. (C2) 

The calculated structure factors due to anomalous 
.dispersion alone are 

F~ A~+"  "" F'__=A'_+iB" = ,B+, (C3) 
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and the complete dispersion-included calculated 
structure factors are 

Fo+=F++F~_=(A°+A~)+i(B°+B~) (C4) 

Fo_=F_+F"__=(A°+A"__)+i(-B°+B"__). (C5) 

Let the dispersion-included observed structure factors 
be called Fo÷ and Fo_ and the dispersion-free 
observed structure factors are given by 

Fo.+=Ao.+iBo~=lFo.lcosao+ilFo.lsina o (C6) 

Fo. -  = mo. - iBo. = If o.I c o s  S o -  ilFo.I sin So. (C7) 

The structure amplitude squared observed from an 
inversion-twinned crystal is given by 

IGol = -- (1 - x)lFo+l = + x l f  o_l 2, (c8) 

in which, according to the Schwarzenbach & Flack 
(undated) hypothesis, one may substitute 

Fo+=Fo.++F~_; Fo_=Fo,,_+F"__ (C9) 

to give 

where 

IFon[ 2 + 2[Ax cos ao+ Bx sin ao]iFo,,I 

+ A 2 + B 2 + E -  IGo12-- 0, (C10) 

Ax = (1 - x)A~_ + xA"__ 
( C l l )  

Bx=(1-x)B~.-xB"_ 

E=(1-x)(A~_2+ B~_2) + x(A'_'2 + B"_2)-A2 x - B2x. 

( c 1 2 )  

Solution of (CIO) leads to 

IFo.I = - lAx  cos ao+ Bx sin Oto] 

+ (IOol2- LAx sin ao -Bx  cos ao] 2 -  E }  1/2, 

(C13) 

which is the expression for the observed structure 
amplitude corrected for anomalous dispersion to be 
used in electron density calculations. We have chosen 
to accept that solution in (C13) for which {Fo,,[ has 
its value closest to that of IFI, the calculated 
anomalous-dispersion-free structure amplitude. In a 
program system it may be convenient to conserve Ax 
and Bx, anomalous contributions to the pseudo struc- 
ture factor G of the inversion twin, in place of A" 
and B','. The expression under the square root in 
(C13) is set to zero if it becomes negative. For cen- 
trosymmetric structures A"= A': and B"= B~ are used 
in place of Ax and Bx and E is set to zero in order 
to make (C13) independent of the physically mean- 
ingless x. 
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Crystal optics with spatial dispersion and excitons. By 
V. M. AGRANOVICH and V. L. GINSBURG. Pp. xi + 
441. Berlin: Springer-Verlag, 1984. Price US $49.00. 

This is a densely packed monograph, written for specialists. 
It is a detailed, sophisticated presentation of the mathemati- 
cal physics of optical phenomena in crystalline materials, 
treated with considerable rigour in terms of the electromag- 
netic-field equations and the complex dielectric-constant 
tensor. It concentrates on the phenomenon of dispersion 
(the effect of the change of wavelength) and on the applica- 
tion of the concepts of the exciton (quantized, local, but 
mobile electronic or magnetic excitation) and the polariton 
(effectively the photon, considered in the context of the 
crystalline medium in which it travels). It should be added 
that this volume is the English translation of the Russian- 
language publication of 1979, itself an upd. ated expanded 
version of an original Russian text. 
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Properties of crystalline silicon carbide. Diodes; 
molecular species in the gas phase; amorphous 
silicon--carbon alloys. (The silicon supplement, Vol. 
B2 of  the Gmelin handbook o f  inorganic chemistry, 
8th ed.) By J. SCHLICHTING, G. CZACK, E. KOCH- 
BIENEMANN, P. KOHN and F. SCHR6DER. Pp. xvi + 
314. Berlin: Springer Verlag, 1984. Price D M  1080. 

Silicon carbide has been investigated extensively by physi- 
cists, chemists, ceramic engineers, electronic engineers, 
crystallographers, materials scientists and others, on 
account of its very special structural characteristics and 
multifarious applications. The scientific literature on this 

material is therefore spread over a very diverse range of 
journals covering different disciplines of science. This hand- 
book is an excellent attempt to compile all the data available 
up to the middle of 1983 on different aspects of the material 
and its uses. 

The first chapter, which comprises 80% of the book (245 
pages), deals with the properties of crystalline SiC. It gives 
an account of the various polytype structures in which the 
material crystallizes, the notations used to describe them, 
the theories of their formation, polytype transformations, 
structural defects, radiation damage, electronic band struc- 
ture, lattice dynamics, bonding, mechanical, thermal, elec- 
trical, magnetic, optical and surface properties of the 
material. 

The second chapter (23 pages) deals with the diodes 
prepared from a- and/3-SIC, their electrical characteristics, 
luminescence behaviour, stability and breakdown. The third 
chapter (3 pages) describes the occurrence and detection 
of the different molecular species in the silicon-carbon 
system in the gaseous phase. The fourth and last chapter 
(36 pages) gives an extensive review of the structure and 
properties of amorphous silicon-carbon alloys, which 
frequently contain hydrogen and sometimes fluorine or 
oxygen. The optical properties of these amorphous alloys 
are compared with those of hydrogenated amorphous 
silicon.' material. 

A separate volume covering the phase diagram, forma- 
tion, preparation, manufacture and chemical reactions of 
SiC is planned to appear in the near future. These aspects 
are therefore not covered in the present volume. The authors 
are to be congratulated on the very thorough review of the 
literature that they have performed. For anyone working 
on the silicon-carbon system this volume provides an 
invaluable storehouse of information and data. While 
strongly recommending this volume as a standard work of 
reference, I must warn prospective buyers of its fantastically 
high price. 
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